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MOBILE OBJECTS
THAT UNDERSTAND

THEIR SURROUNDING
ENVIRONMENT

This was a Science Fair project by Brian Dickens which won 1st place in the computer science
category at the Fairfax County Regional Science and Engineering fair in April of 1989. The
project work would have been done when Brian was 13 years old.

For a blog entry summarizing interesting and funny parts about the project, see:

http://hostilefork.com/2013/12/11/funny-maze-solver-from-age-13/



http://www.google.com/url?q=http%3A%2F%2Fhostilefork.com%2F2013%2F12%2F11%2Ffunny-maze-solver-from-age-13%2F&sa=D&sntz=1&usg=AFQjCNHJUUOhYIazSuM0CoEgzbPTJjTeZQ

PURPOSE

The purpose of this project is to design a program capable of simulating artificially
intelligent robot “mice,” and to compare the maze solving abilities of the basic types. Using data
gathered on the different mice, | will try to incorporate their strong points to create a mouse with
improved maze solving capabilities.

HYPOTHESIS

My hypothesis was that mice with the ability to learn would solve mazes faster than mice
who pick directions at random. | also expected that already trained mice would always follow the
same path in the same maze because they would take a previously learned course. Therefore,
if they solved the maze the first time, they should solve it in the same way every time.

MATERIALS

Commodore 128
1541 Disk Drive
1084 Monitor
Floppy Disk
1525 Printer

PROCEDURE

First, | drafted a flow chart of the way the program would work. Then from this flow chart,
| wrote the computer program that created the mazes and ran the mice. One type was the
random mouse. It chooses directions for every move at random. The other type was the
learning mouse, which records its initial responses which it picks at random, and then recalls
them before every subsequent move. | devised a way to give the learning mouse a memory
bank that would be large enough for any maze.

Once the learning mouse appeared to be working properly, | had to prove it was learning.
The way mice get their directions is by picking a random number from one to eight and then
looking ahead in the corresponding direction to see if there is a wall. If there is no wall, the
response is valid, and the mouse moves in that direction until it hits another wall. If there is a
wall, then the mouse tries to pick a new direction.



| compared the number of times random and learning mice found a valid direction out of
the total number of directions tried in a three by four box (successful moves divided by attempted
moves). | did this with ten mice for each category of 10, 20, 30, 50, 100, 500 and 1000
attempted moves and took the average. | did one mouse for each category of 5000 and 10000
attempted moves.

Next | put the mice in an obstacle maze to see how they differed and what their maze
solving capabilities were. | ran twenty mice in the maze, ten of them were random and ten of
them were learning. | then recorded the total moves for each mouse. Then | tried adding a
non-backtracking routine to the mice that prevented them from picking a direction that would take
them back the way that they had been going. | ran twenty more of these mice in the same
obstacle maze, ten non-backtracking random and ten non-backtracking learning. | recorded the
total moves for each mouse.

| tried to eliminate the problem of “endless loops” in learning mice by having them modify
the maze as they go along with a trail. They would regard each trail square as a wall. Another
intention of the trail was to keep the mouse from going back into places it had already been. |
tested three learning trail mice and three random trail mice for each of five different mazes and
recorded the total moves for each mouse.

When | saw how many moves were wasted by the backtracking trail mouse at dead
ends, and how the non-backtracking mouse got in its own kind of mousetraps, | created a new
trail mouse that disregarded its trail if the mouse was completely blocked in by it. | tested three
of these new learning trail mice and three new random trail mice in each of the same five mazes
and recorded the total number of moves taken by each mouse.

After seeing all the problems that all the other mice encountered, | finally developed a
“triple trail priority mouse.” This mouse leaves three kinds of trails, uses a priority chart to tell it
which trails are oldest, and disregards the oldest trail when it boxes itself in. | ran three learning
triple trail priority mice and three random triple trail priority mice in each of the five mazes and
recorded the total number of moves for each mouse. Just for comparison, | ran three of the
original learning mice and three of the original random mice in each of the same five mazes and
recorded the total number of moves for each mouse.

METHODS

The way | made it so that learning mice would learn was to assign a value from 0-255 to
every possible situation it could come across. | had 2048 bytes of memory to use. A byte is
made up of eight bits, which can be either off or on. Binary is the way of representing bits, with
ones being on and zeros being off. Binary place values are powers of two, like tens in our
decimal system. In decimal, 1234 is the same as 1000+200+30+4. In binary, 1111=8+4+2+1,
00000000=0, and 11111111=255.



| assigned each of the binary digits in a byte (represented here in decimal powers of two)
to the surrounding walls:

128 | 64 32

10 @. 8

4 . 1

When the learning mouse bumps into a wall, he remembers the direction he came from.
Then he looks one square in each direction, and if there is a wall he adds the value for the
corresponding box to B. If the mouse is surrounded entirely by walls (a hopeless situation) the
value is 128+64+32+16+8+4+2+1, or 255. If there are no walls at all (also impossible, since a
mouse must bump into a wall before it will ever reach this routine, and there would be no walls
for it to have bumped into), the value would be 0+0+0+0+0+0+0+0, or 0.

Once the learning mouse has its situation value, it still needs to get a new direction from
memory. Learning mice, as mentioned earlier, have 2048 bytes of memory. This memory is
divided into eight banks of 256 bytes each. Mice know what directions they are going in by
storing it as a number between one and eight.

This figure shows which numbers represent which directions:

1 - -
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When the mouse got its situation value, it remembered the direction it was going in. It
looks in the memory bank of that direction (0 - 8), at the situation specified location (0 - 255), and
in that memory location it finds the direction it remembered. If it finds a value of zero in that
location, it picks a valid response randomly and stores it in that location.

The learning system allows for any size maze that a mouse could ever be put in.
However, it also opens it up to the deadly problem of endless loops. An example of an endless
loop is below:

When the mouse went upward the first time, he came upon a binary situation of
128+64+32, or 224, he was going in direction two and he picked direction four. When he came
up the second time, he found that he had been going in direction two and the situation value was
224. He got the direction which he had stored (direction five) and is from then on doomed to
forever repeat his responses, and he never got the cheese.

Another problem faced by mice was the mousetrap. The basic mouse trap formation is
shown below:




Yet another obstacle for mice are dead squares. A cheese placed on a dead square
cannot be eaten. Dead squares are indicated by the squares with the Big D’s in this diagram

Since the mouse travels corner to corner, it can never change direction unless itis in a
corner. There are other boxes in which dead squares can be found, and they are classified in
graph four. The first type of box is one that has a side of three.

Since the mouse can pace back and forth, it can cover every square, and the efficiency
rating for all such boxes should be about the same. The second class of boxes is those with
both sides equal. There are dead squares in all those larger than six by six, and the binary value
for all of them should be the same. The third class is boxes similar to a four by five, they can be
found by adding a number to four and adding twice that number to five. They travel around the
corners and to the two midpoints of the long sides. Their efficiency rating should be the same.
There are dead squares in all of them except four by five.

| did not classify any further, although | can think of other boxes with dead squares, these
are the basic types which show up most often.

The triple trail priority mouse uses a priority chart, given here:

Trail Leaving 1 = 3

1st (Blank) B B B

2nd (2 Back - 3 1

3rd (Last) 3 1 2




When the mouse finds that it has a binary situation value of 255 (trails counted as walls),
it disregards the trail which is second on its chart. If it still sees the situation as 255, it
disregards the trail which is third on its chart. If the situation is still 255, it switches to the next
trail and continues. This mouse was based on the non-sidetracking mouse in its policy of “if you
are surrounded by trails, treat them as blank spaces.”

RESULTS

The results of my first experiment are shown in the following graph:
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Graph 1: Learning ability of Random, Learning, and Trained Mice

In a three by four box, the mouse can only move back and forth, and for both of the
situations there is a one in eight chance that the mouse will pick a valid direction at random. The
decimal value is .125, and that was approximately the ratio of successful moves/attempted
moves for the random mouse. However, as the graph shows, the ratio for the learning mouse
quickly jumped up to almost one. This was because after the learning mouse had already gone
through the process of finding the valid directions for the two situations once, it was able to pick
a valid move every time. The mice who had already undergone training could call up valid
responses every every time, so since their attempted moves were equal to their successful
moves, the ratio was one.



When | put the random mice in the obstacle maze, they seemed to be taking too many
moves. Most of the moves were wasted when the mice backtracked. However, when | put the
learning mice in the maze, they were incapable of solving it at all. They got into what | called
‘endless loops”, constantly recalling the same responses over and over again even when they
don’t work. Endless loops could have hundreds of steps, and if you put a learning mouse in a
maze it makes a pattern it cannot break. This was also true of an already trained mouse.

When | added the no-backtracking routine, | saw that the average score for the random
mice improved noticeably. The learning mice still were not able to solve the maze, but they
managed to do better since the simplest and most common of endless loops had been
eliminated. This is demonstrated in the following graph:
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Graph 2: The advantages of using a non-backtracking mouse.

When | began running the mice in mazes. | became aware of some of the problems that
they faced. Mousetraps were one of these problems. The standard mousetrap is in the shape
of a T. Since my mice can only change their direction when they hit a wall, they are forced to
pace back and forth endlessly in these situations.



Another problem mice encountered were dead squares. These are certain squares in
certain mazes, located in open areas, which the mouse has no way to reach. A cheese placed
on one of these squares would be impossible to get. | collected some more data on types of
boxes so that | could classify boxes that form dead squares:
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Graph 3: The existence of dead squares.

The results showed associations for four major classes of boxes, and the learning ratios
for the first three classes should all be the same. If a large box and a small box both have
fractional equivalents, then the large box has dead squares in it because it is only using the
squares like the ones it used in the small box, leaving gaps or dead squares.

The trail mice, which | programmed to clear all trails in their immediate vicinity when they
boxed themselves in, had some problems. When [ tried to run them in a maze while allowing
backtracking, they took an unreasonable amount of time to get out of dead ends. The learning
mice almost always got into endless loops in this situation, and | figured that it is nearly
impossible for a random trail mouse to choose the combination of responses that will get it out of
a dead end. However, they were able to evade the standard mousetrap.



E = endleas loop, M = mouse trap; C = couldnt solve
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Graph 4: Comparison of required moves in 5 mazes for the different mice.

When | collected the data in the graph above, | used the no-backtracking routine with the
trail mice. This appeared to be working very well until the mice were put in maze 80. They could
still evade the standard mousetrap, but they got caught in their own special type of mousetrap
and could not solve maze 80 any of the three times they tried. However, the trail mice did well in
the other mazes.

The new trail mice had a slightly better average score than the old trail mice. The new
learning trail mice only got into endless loops seven times while the old learning trail mice got
into endless loops nine times. However, the new trail mice, unlike the old trail mice, could not
get out of the standard mousetrap. Both new and old trail mice were able to defeat the problem
of dead squares, since dead squares can only be in open areas and trail mice fill up open areas
with trails.

The results from running the triple priority mice against the others were encouraging.
Even the self-programming triple priority mice were able to solve the mazes almost all of the
time. The triple trail priority mice sometimes took more moves than the other types, but the
random triple priority mouse could solve every maze. The triple priority mouse could overcome
both mousetraps and dead squares.



TR T T
1 567 I 377
o 567 191
3 567 378 o

] 4 | - 567 i 562 ;
5. | Sé? 977

Table 1: Demonstration of the learning ability of the triple priority learning mouse versus
the random triple priority mouse in Maze #7.

CONCLUSION

My first conclusion is that learning mice learn. This was proven by the results given in
graph one.

My second conclusion is that learning mice are faster and more efficient in their
responses, because they take less attempts (proven by graph one) and, unlike random mice,
they do the same thing in the same maze (proven by table one). This proved a part of my
hypothesis. However the part of my hypothesis about learning mice solving the mazes faster
than random mice was incorrect. This was due to the learning mice getting into “endless loops.”

My third conclusion is that although the learning mice have the advantage of consistency,
they are handicapped by their inability to vary their responses (see graphs two and four). Since
even the triple priority mouse sometimes took over 2000 moves to solve a really tough maze, |
conclude that a memory system based upon a sequential list of all moves made would be
impractical.

Since the random triple priority mice were able to solve every maze they were put into,
the triple priority mouse is the best maze solver I've created to date. | also conclude that the
learning trail mice--and particularly triple priority learning mice--were able to solve mazes
(whereas non-trail learning mice can’t) because when they come back to a particular point in the
maze, it has been changed by their trail so that the endless loop squares have been filled in so it
can'’t follow the same path again.



My final conclusion is that picking responses at random will always lead to eventual
success if success is possible, and that a system of unchanging responses is not always
beneficial.

FURTHER RESEARCH

These experiments opened up the possibility of new experiments. One task would be to
create a learning mouse that can vary its responses and still be consistent. A mapping mouse
could be created that makes a map relative to its starting position and keeps in memory areas it
has not explored yet and tries to choose directions that will get it there. A helpful mouse would
be one that would know when a maze is impossible and would quit if it was.

There are already robots that are programmed by humans to perform specific tasks,
such as those on assembly lines. There are also remote controlled robots that humans control
directly, used to perform tasks flexibly in dangerous situations. The third type of robots are a
new field, artificially intelligent robots, that do not need any special programming or direct control.
They adapt to the situation.

A robot controlled by a program like mine would have this level of intelligence and would
be able to perform special tasks. A deep space satellite when it gets far away from Earth, would
encounter new situations and since instructions from Earth would take too long to reach it, it
would have to respond on its own. This is the type of instance in which my type of program
would be applicable.

BACKGROUND RESEARCH

Artificial intelligence is, in electronics, the means by which computers, robots, and other
devices perform tasks which normally require human intelligence. My program was going to use
artificial intelligence to perform the usually human task of maze solving.

Although | had written computer programs before, | had to read about certain BASIC
commands that | had never used before, such as INT and RND(-TI). | also had to write some
Machine Language routines for special tasks that would be too bulky and slow in BASIC. These
routines handled such things as transferring data for the maze from memory to the screen. |
also had to read about screen memory, which was the basis of my entire program. Screen
memory was used to move the mouse on the screen, allow the mouse to check ahead for walls
or cheese, and several other vital parts of the program.

An article in POWER PLAY magazine on editing the character set helped me create
realistic looking mice and cheeses. This was much better than the alternative; a letter “M” roving
around the screen in search of a letter “C.”
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